Select language: english | cesky | deutsch | italiano | simplified chinese | traditional chinese | hindi Concept: English word: Home

# division fn (DivisionFn)

If number1 and number2 are Numbers, then (DivisionFn number1 number2) is the result of dividing number1 by number2. An exception occurs when number1 = 1, in which case (DivisionFn number1 number2) is the reciprocal of number2.

## Ontology

SUMO / NUMERIC-FUNCTIONS

## Class(es)

 Classe

inheritable relation

FunzioneBinaria
 FunzioneAssociativa
 Classe

inheritable relation

RelazioneEstesaAQuantitá

division fn

## Coordinate term(s)

addition fn  day fn  density fn  edition fn  exponentiation fn  graph path fn  hour fn  intersection fn  interval fn  kappa fn  list concatenate fn  list order fn  log fn  max fn  maximal weighted path fn  measure fn  mereological difference fn  mereological product fn  mereological sum fn  min fn  minimal weighted path fn  minute fn  month fn  multiplication fn  periodical issue fn  reciprocal fn  recurrent time interval fn  relative complement fn  relative time fn  remainder fn  round fn  second fn  series volume fn  speed fn  subtraction fn  temporal composition fn  time interval fn  union fn  where fn  equal  greater than  greater than or equal to  less than  less than or equal to

## Type restrictions

Quantitá DivisionFn(Quantitá, Quantitá)

## Related WordNet synsets

division
an arithmetic operation that is the inverse of multiplication; the quotient of two numbers is computed

See more related synsets on a separate page.

## Axioms (10)

Se number é un' istanza di NumeroRazionale, allora esiste NumeroIntero int1,NumeroIntero int2 tale che number is uguale a "int1/int2".
```(=>
(instance ?NUMBER RationalNumber)
(exists
(?INT1 ?INT2)
(and
(instance ?INT1 Integer)
(instance ?INT2 Integer)
(equal
?NUMBER
(DivisionFn ?INT1 ?INT2)))))```

"number1 mod number2" is uguale a number se e solo se "(""the il maggior numero intero minore o uguale a "number1/number2""*number2"+number" is uguale a number1.
```(<=>
(equal
(RemainderFn ?NUMBER1 ?NUMBER2)
?NUMBER)
(equal
(MultiplicationFn
(FloorFn
(DivisionFn ?NUMBER1 ?NUMBER2))
?NUMBER2)
?NUMBER)
?NUMBER1))```

Se degree é un' istanza di MisuraDiAngoloPiano, allora "la tangente di degree" is uguale a ""il seno di degree"/"il coseno di degree"".
```(=>
(instance ?DEGREE PlaneAngleMeasure)
(equal
(TangentFn ?DEGREE)
(DivisionFn
(SineFn ?DEGREE)
(CosineFn ?DEGREE))))```

é un elemento di identitá di division fn.
`(identityElement DivisionFn 1)`

Se number é un' istanza di NumeroReale, allora "number celsius degree(s" is uguale a """(number-"/" fahrenheit degree(s".
```(=>
(instance ?NUMBER RealNumber)
(equal
(MeasureFn ?NUMBER CelsiusDegree)
(MeasureFn
(DivisionFn
(SubtractionFn ?NUMBER 32)
1.8)
FahrenheitDegree)))```

Se number é un' istanza di NumeroReale, allora "number quart(s" is uguale a ""number/" united states gallon(s".
```(=>
(instance ?NUMBER RealNumber)
(equal
(MeasureFn ?NUMBER Quart)
(MeasureFn
(DivisionFn ?NUMBER 4)
UnitedStatesGallon)))```

Se number é un' istanza di NumeroReale, allora "number pint(s" is uguale a ""number/" quart(s".
```(=>
(instance ?NUMBER RealNumber)
(equal
(MeasureFn ?NUMBER Pint)
(MeasureFn
(DivisionFn ?NUMBER 2)
Quart)))```

Se number é un' istanza di NumeroReale, allora "number cup(s" is uguale a ""number/" pint(s".
```(=>
(instance ?NUMBER RealNumber)
(equal
(MeasureFn ?NUMBER Cup)
(MeasureFn
(DivisionFn ?NUMBER 2)
Pint)))```

Se number é un' istanza di NumeroReale, allora "number ounce(s" is uguale a ""number/" cup(s".
```(=>
(instance ?NUMBER RealNumber)
(equal
(MeasureFn ?NUMBER Ounce)
(MeasureFn
(DivisionFn ?NUMBER 8)
Cup)))```

Se number é un' istanza di NumeroReale, allora "number angular degree(s" is uguale a ""number*"PiGreco/"" radian(s".
```(=>
(instance ?NUMBER RealNumber)
(equal
(MeasureFn ?NUMBER AngularDegree)
(MeasureFn
(MultiplicationFn
?NUMBER
(DivisionFn Pi 180))